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ABSTRACT

The CANDID project �Comparison Algorithm for Navigating Digital Image Databases	 employs probability
density functions �PDFs	 of localized feature information to represent the content of an image for search and
retrieval purposes� A similarity measure between PDFs is used to identify database images that are similar to
a user�provided query image� Unfortunately� signature comparison involving PDFs is a very time�consuming
operation� In this paper� we look into some e�ciency considerations when working with PDFs� Since PDFs can
take on many forms� we look into tradeo
s between accurate representation and e�ciency of manipulation for
several data sets� In particular� we typically represent each PDF as a Gaussian mixture �e�g� as a weighted sum
of Gaussian kernels	 in the feature space� We �nd that by constraining all Gaussian kernels to have principal axes
that are aligned to the natural axes of the feature space� computations involving these PDFs are simpli�ed� We can
also constrain the Gaussian kernels to be hyperspherical rather than hyperellipsoidal� simplifying computations
even further� and yielding an order of magnitude speedup in signature comparison� This paper illustrates the
tradeo
s encountered when using these constraints�
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� Introduction

Many content�based retrieval techniques for digital imagery use either a feature vector approach or a feature

histogram approach to represent image content� That is� every object in an image �or every image by itself	 is
represented by a vector of speci�c feature measurements� or by a histogram of various feature value occurrences�
When representing textures or shapes in an image� feature vector approaches are commonly used���� The texture
of an image �or of a single object	 is represented by a feature vector that can be compared to texture feature
vectors from other database images using a weighted Euclidean distance� thereby allowing the retrieval of images
with 
similar� textures� In contrast to the feature vector approach� color content is typically described using a
histogram� A histogram �in a three�dimensional color space	 of the colors contained in each image �or in each
distinct object	 is computed� and an L�� L�� or an L� distance is used to compare these color histograms����

When using a feature�vector approach to describe image content� each component of a feature vector represents
a single measurement taken over the entire image �or over an entire region of interest	� Histogram approaches� on
the other hand� allow us to represent the distribution of localized features� instead of restricting us to a single� global
measurement� As an illustration of the added utility when using histograms� consider the problem of representing
the color content of an image� A feature�vector approach might consist of computing an average red value� an
average green value� and an average blue value for the entire image� The result would be a single feature vector
of the 
average� or 
dominant� color characteristics in the image� A histogram approach� however� allows us to
capture information about the overall distribution of colors in an image� We not only get a feel for the 
average�
or 
dominant� color characteristics of the image� but we also retain information about the relative occurrences of
the di
erent color components� such as dark green versus light green� More information is represented when using



the histogram approach� and it is therefore generally bene�cial to favor histogram approaches over feature�vector
based approaches� as long as we consider only the question of information representation and ignore questions
about e�ciency� Unfortunately� histogram approaches do not scale well with problem dimension� For color
representation� where we are concerned with a three�dimensional RGB color space� we can easily divide the
space into a discrete number of bins �e�g�� �x�x� � ��� bins� or ��x��x�� � ���� bins	� As we consider higher�
dimensional data� however� the number of bins required for accurate representation grows exponentially� Thus�
histogram approaches do not produce viable solutions for problems concerning high�dimensional data� Another
di�culty in using histograms is that they require a discretization of the feature space� which may not be easily
obtainable�

The CANDID �Comparison Algorithm for Navigating Digital Image Databases	 project� employs param�
eterized representations of probability density functions �PDFs	 to represent image content� Like histogram
approaches� PDFs represent the distribution of localized features� But using parameterized representations of
PDFs can circumvent some of the problems associated with histograms since 
bins� are not explicitly designated
in the feature space� Of course� computing probability density functions is much more expensive than computing
histograms� so we are making a sacri�ce in terms of computational cost� Similarly� comparing one PDF to another
may be more expensive than comparing two histograms�

In this paper� we look at e�ciency issues related to probability density function comparison� Speci�cally�
we consider tradeo
s between accurate representation and e�ciency of manipulation for CANDID signatures�
We focus on the problem of speeding up image comparisons by reducing the computational complexity involved
in distance calculations� We do not focus on the problem of e�cient CANDID database indexing� which is
discussed elsewhere in these proceedings��

In the CANDID methodology� we typically represent each PDF as a Gaussian mixture �e�g� as a weighted
sum of Gaussian kernels	 in the feature space� If we constrain all Gaussian kernels to have principal axes
that are aligned to the natural axes of the feature space� computations involving these PDFs are simpli�ed�
We can also constrain the Gaussian kernels to be hyperspherical rather than hyperellipsoidal� simplifying the
computations even further� This paper illustrates the tradeo
s encountered when using these constraints �see
Figure �	� Section � of this paper discusses the closed�form solution for computing distance and similarity measures
with our CANDID signatures� Sections � and � look at constraints that can be used to simplify the calculations
necessary to compare PDFs� Finally� Section � and Section � discuss some experimental results and conclusions�
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Figure �� Constraining Gaussian Orientation And Shape� �A	 Contour lines of a typical Gaussian kernel are
hyperellipsoidal in shape� �B	 Constraining the principal axes of the Gaussian to line up with the natural axes
of the feature space reduces computational complexity for distance measures� �C	 Constraining each kernel to be
hyperspherical rather than hyperellipsoidal simpli�es the computations even further�

� Signature Representation and Comparison

CANDID employs probability density functions to represent image content in an approach that closely resem�
bles the way histograms represent textual content in the N�gram approach to free�text document comparison�	��


The general idea is that we �rst compute several features �local color� texture� and�or shape	 at every pixel in
the image� and then compute a probability density function that describes the distribution of these features in an



N �dimensional feature space� This probability density function is our content signature for the given image� Of
course� probability density function estimation is a large problem in itself� we attempt to estimate the probability
density function as a Gaussian mixture� Each Gaussian distribution function is de�ned by a mean vector �

i
�determining the position of the Gaussian	 and a covariance matrix �i �determining the shape and orientation of
the Gaussian	� A general data clustering routine can provide clusters for which for �

i
and �i can be obtained�

We use the k�means clustering algorithm����� followed by an optional cluster merging process������ A mean vector
and covariance matrix are computed for each of the resultant clusters� and the associated Gaussian distribution
function is weighted by the number of elements in the corresponding cluster� Any cluster having a singular
covariance matrix is presently assumed to represent uninteresting data� and is therefore deleted from the data
set and ignored in subsequent processing� Once a mixture of Gaussians has been identi�ed� a signature over a
speci�c N �dimensional feature space for image I can be represented as follows�
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In the equations below� we di
erentiate between two di
erent signatures� PI��x	 and PI��x	� with the following
notation�
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We typically compare PI��x	 and PI��x	 using an L� distance measure dist �I�� I�	� or a normalized inner�
product sim �I�� I�	� as de�ned below�
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Using the signature representation given in Equation ��	� these measures expand as follows�
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These measures both contain O�K�
� � K�

� 	 terms consisting of an in�nite integral over the product of two
Gaussians� These integrals can be computed as follows�Z
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where c� and c� are given by�
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� Constrained Gaussian Orientation

In an e
ort to simplify the calculations and speed up CANDID signature comparison� we will constrain all
covariance matrices in the previous section to be diagonal� That is� every o
�diagonal element will be �� Note
that all diagonal elements of these covariance matrices are denoted ��ik which corresponds with the fact that each
value represents a variance in dimension k for the associated Gaussian�
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Since Gaussian kernels with diagonal covariance matrices have their principal axes aligned with the natural
axes of the feature space �as shown in picture �B	 of Figure �	� we will refer to this constraint as the axis alignment

constraint� When we constrain the form of our covariance matrices in this manner� the evalutation of Equation
��	 is simpli�ed substantially�
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These values are substantially less expensive to compute as compared to their counterparts for the non�
constrained Gaussian case�



� Hyperspherical Constraints

In an e
ort to simplify our calculations even further� we now constrain all covariance matrices to be represented
by a single scalar value multiplied by the identity matrix� Again� these scalar values represent variances� and are
denoted as squared values�

�i � ��i I �j � ��j I ���	

Gaussian kernels of this type will have hyperspherical contour lines� as indicated in picture �C	 of Figure ��
We therefore refer to this as a hyperspherical constraint� Evaluating Equation ��	 is now simpli�ed even further
than it was in Section ��
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� Experimental Results

Remotely�sensed data can be used to locate underground oil reserves� monitor pollution from large factories�
and track the disappearance of the Earth�s rain forests� A database containing imagery collected by airborne
sensors will prove much more valuable if scientists can access the data by searching on di
erent attributes of image
content instead of only being able to retrieve data by searching on associated textual metadata� The ability to
automatically locate areas having similar ground cover will enable scientists to search through terabyte�sized
image databases in order to study environmental problems� As an example� if a coniferous forest in Oregon is
rapidly disappearing for no apparent reason� then other areas around the world having similar vegetation can
be retrieved to see if they are experiencing the same problem� Scientists would then know if this was a global
phenomenon or if local conditions were to blame�

We have applied CANDID to the problem of retrieving multispectral satellite data �Landsat TM data	 from
a database� This enables queries such as� 
Show me all images of areas with landcover similar to this example��
As an experiment� we created a database containing ���� ���� ���� ��banded images �the thermal infrared band
in each image was ignored	� The sample images used to populate our database were acquired from four di
erent
geographic locations� each having its own characteristic landscape �see Table �	� The Moscow area� for example�
contains many diverse landcover types in every ��� � ��� subimage that was extracted� These landcover types
include coniferous forest� deciduous forest� and agriculture� The Moscow images look nothing like the images
around the other three geographic locations� Similarly� the Cairo landscape is unique and dissimilar to the
Moscow� Albuquerque� and Los Alamos areas�

We computed global spectral signatures for each database image by clustering the ��dimensional pixel vectors
into �� clusters� By assuming that each cluster represents a set of data that could be generated by a Gaussian
random process� we can compute the maximum likelihood parameters for that Gaussian random process��� The
estimates for the mean vector and covariance matrix for the Gaussian associated with the ith cluster �containing



LOCATION DOMINANT LANDSCAPE COVER

Moscow �Russia	 Coniferous Forest� Deciduous Forest� Agriculture� ���
Cairo �Egypt	 Agriculture� Dense Urban� ���

Albuquerque �USA	 Desert� Coniferous Forest� ���
Los Alamos �USA	 Desert� Coniferous Forest� ���

Table �� Selected Geographic Locations

Mi pixels	 are found using the equations below�
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The resultant Gaussian distribution functions are weighted by the percentage of image pixels that were assigned
to the associated clusters� and the overall PDF is taken to be the weighted sum of these �� Gaussians� It can
be shown that the maximum likelihood estimates for a Gaussian that is subject to the axis alignment constraint
described in Section � can be found by simply setting the o
�diagonal elements of �i to �� Similarly� when
enforcing the hyperspherical constraint described in Section �� we can simply compute the average of the N

diagonal elements of �i to get ��i �

Initial timing results indicate that we get about a �� speedup when using axis alignment constraints� and
an ��� speedup when using the hyperspherical constraints for performing searches on this data set� Computing
��� inner products usually takes ���� CPU seconds� but it takes only ���� CPU seconds when using the axis
constraints� and ���� CPU seconds when using the hyperspherical constraints� We have observed that� as expected�
the improvement in speed increases with the dimensionality of the feature space� Timings were obtained on a
Sun SPARCStation ���

If we look at how the di
erent constraints a
ect the order that database images are retrieved� we see that some
things do indeed change� It is di�cult to judge� however� whether this constitutes a degraded performance in the
ability of CANDID to compare images� Figure � shows the sorted retrieval scores �normalized inner�product
values	 when using one of the Moscow images as a query image� All three signature representation techniques
produce data sets where all Moscow images are retrieved from the database before any of the other �Albuquerque�
Los Alamos� Cairo	 images� The speci�c order that these Moscow images are retrieved� however� does change�
Since image similarity is a somewhat subjective measure� we might say that as long as all Moscow images are
retrieved �rst� then the results obtained by our three methods are comparable�

� Conclusions

We have successfully increased the speed of comparing CANDID signatures by an order of magnitude� This
was done by enforcing constraints on the shape and orientation of individual Gaussian components� Since the

similarity� between two images is a subjective measure� the results obtained when using our constraints may
or may not a
ect the retrieval process adversely� If it turns out that these constraints a
ect results too much
for general search and retrieval purposes� they may still provide a good starting point for making a 
�rst pass�
during a database query� In this scenario� we would use the faster signature comparison methods to discount
database images that would not be expected to produce signi�cant similarity scores� The original� more expensive�
comparison techniques would then be used to sort the remaining images�



Figure �� Moscow Retrieval Scores �Spectral Features � �� Gaussians	� The plot on the left shows the sorted
similarity scores between the Moscow query image and the top �� matches in the database� All images other
than the �rst �� produced negligible similarity scores� only the �rst few are depicted in the plot� The plot on the
right also shows the similarity scores for those �� database images when using axis constraints �� � �	� as well
as hyperspherical constraints �� � �	�
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